$\mathrm{O} 3-\mathrm{Cu}-\mathrm{O}^{1}$	$88.13(5)$	$\mathrm{O}^{\prime}-\mathrm{Cu}^{\prime}-\mathrm{O}^{\prime}$	$90.84(6)$
$\mathrm{O} 3-\mathrm{Cu}-\mathrm{O} 6$	$84.81(5)$	$\mathrm{O}^{\prime}-\mathrm{Cu}^{\prime}-\mathrm{O6}^{\prime 1}$	$84.81(5)$
$\mathrm{O} 3-\mathrm{Cu}-\mathrm{N} 1$	$95.84(6)$	$\mathrm{O}^{\prime}-\mathrm{Cu}^{\prime}-\mathrm{Nl}^{\prime}$	$93.36(5)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{Cu}-\mathrm{O} 6$	$170.18(4)$	$\mathrm{O5}^{\prime}-\mathrm{Cu}^{\prime}-\mathrm{O6}^{\prime \prime}$	$175.63(5)$
$\mathrm{O} 5^{\prime}-\mathrm{Cu}-\mathrm{N} 1$	$96.46(5)$	$\mathrm{O5}^{\prime}-\mathrm{Cu}^{\prime}-\mathrm{Nl}^{\prime}$	$85.42(5)$
$\mathrm{O} 6-\mathrm{Cu}-\mathrm{N} 1$	$91.05(5)$	$\mathrm{O6}^{\prime \prime}-\mathrm{Cu}^{\prime}-\mathrm{Nl}^{\prime}$	$94.31(6)$

Symmetry code: (i) $x-1, y, z$.

Table 2. Hydrogen-bonding geometry ($\left({ }^{\circ},^{\circ}\right)$

$D-\mathrm{H} \cdots \mathrm{A}$	D-H	H \cdots A	D. \cdot A	$D-\mathrm{H} \cdots \cdot A$
$\mathrm{N} 2-\mathrm{H} 21 \cdots \mathrm{Ol}^{1}$	0.78 (3)	2.18 (3)	2.882 (2)	151 (3)
$\mathrm{N} 2-\mathrm{H} 22 \cdots \mathrm{O} 4^{\text {ii }}$	0.88 (3)	2.04 (3)	2.883 (2)	161 (2)
$\mathrm{O} 2-\mathrm{H} 23 \cdots \mathrm{O}$	0.79 (3)	1.97 (3)	2.755 (2)	172 (3)
O2-H24. . O5 $5^{\text {iii }}$	0.73 (3)	1.94 (3)	2.666 (2)	172 (3)
O3-H31...O4 $4^{\text {iv }}$	0.76 (3)	1.93 (3)	2.693 (2)	174 (3)
O3-H32 . OO7 $7^{\text {ini }}$	0.80 (3)	1.89 (3)	2.687 (2)	175 (2)
$\mathrm{O} 4-\mathrm{H} 42 \cdots \mathrm{O} 4^{\prime}$	0.77 (3)	1.90 (3)	2.669 (2)	177 (3)
O4-H41. $\mathrm{O6}^{\prime}$	0.72 (3)	2.04 (3)	2.754 (2)	170 (3)
$\mathrm{N} 2^{\prime}-\mathrm{H} 21^{\prime} \cdots \mathrm{O} 7^{\text {iii }}$	0.83 (3)	2.06 (3)	2.887 (2)	170 (3)
$\mathrm{N} 2^{\prime}-\mathrm{H} 22^{\prime} . . . \mathrm{O} 8^{\vee}$	0.82 (3)	1.99 (3)	2.763 (2)	158 (3)
$\mathrm{O} 2^{\prime}-\mathrm{H} 24^{\prime} \cdots . \mathrm{O}^{\prime}$	0.79 (3)	1.91 (3)	2.695 (2)	172 (3)
$\mathrm{O} 2^{\prime}-\mathrm{H} 23^{\prime} \cdots \mathrm{Or}^{\text {vi }}$	0.78 (3)	1.91 (3)	2.683 (2)	173 (3)
O^{\prime} - $\mathrm{H} 31^{\prime} \ldots . \mathrm{O} 7^{\text {vi }}$	0.73 (3)	1.95 (3)	2.670 (2)	168 (3)
$\mathrm{O3}^{\prime}-\mathrm{H} 32^{\prime} \cdots \mathrm{O}^{\text {/iv }}$	0.86 (3)	1.77 (3)	2.627 (2)	178 (3)
O4'-H41'... Ol^{\prime}	0.88 (3)	2.11 (3)	2.903 (2)	149 (3)
O4'-H42'. . O6	0.67 (3)	2.09 (4)	2.762 (2)	174 (4)

Symmetry codes: (i) $-x,-y, 1-z$; (ii) $x-1, y-1, z$ (iii) $1-x, 1-$ $y, 1-z ;$ (iv) $x-1, y, z ;$ (v) $x, 1+y, z ;$ (vi) $1-x, 1-y,-z$.

The title structure was solved by direct methods and refined by full-matrix least-squares calculations. All non-H atoms were refined anisotropically. All H atoms were located from a difference synthesis and refined isotropically.

Data collection: Siemens P3 software. Cell refinement: Siemens P3 software. Data reduction: XDISK in SHELXTL/PC (Sheldrick, 1990). Program(s) used to solve structure: SHELXS97 (Sheldrick, 1997b). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a). Molecular graphics: $X P$ in SHELXTLIPC. Software used to prepare material for publication: SHELXL97

This work was supported by the Polish Committee of Scientific Research (grant No. 3 T09A 142 15).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1250). Services for accessing these data are described at the back of the journal.

References

Castro, I., Faus, J., Julve, M., Amigó, J. M., Sletten, J. \& Debaerdemaeker, T. (1990). J. Chem. Soc. Dalton Trans. pp. 891-897.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (I968). Acta Cṛist. A24, 351-359.
Sheldrick, G. M. (1990). SHELXTL/PC User's Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997a). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXS97. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
Sieroń, L. \& Bukowska-Strzyżewska, M. (1997). Acta Cřist. C53. 296-298.
Sieroń, L. \& Bukowska-Strzyżewska, M. (1998). Acıa Cṛ̂st. C54, 322-324.
Watanabe, K., Komiya, S. \& Suzuki, S. (1973). Bull. Chem. Soc. Jpn. 46, 2792-2794.
is a consequence of the presence of the four-membered ring involving the chelated dppm ligand. The $\mathrm{O}-\mathrm{Pd}-\mathrm{O}$ angle is also less than 90°, whereas the two $\mathrm{P}-\mathrm{Pd}-\mathrm{O}$ angles are greater [97.54 (7) and 104.73 (6) ${ }^{\circ}$]. The PdP distances (Table 1) are comparable to reported short Pd-P distances [2.217 (3) and 2.233 (2) \AA; Wink, 1990] due to the poor trans influence of the ONO_{2} ligand. The $\mathrm{N}-\mathrm{O}$ distances involving the coordinated O atoms are approximately $0.07 \AA$ longer than those to the free O atoms. This is as expected since the terminal $\mathrm{N}-\mathrm{O}$ bonds should exhibit some multiple-bond character.

Fig. 1. View of the title complex showing the labeling of the non-H atoms. Displacement ellipsoids are shown at 50% probability levels and H atoms are drawn as small circles of arbitrary radii.

The molecular structures of five palladium-nitrate complexes have been reported previously (Table 2). The $\left[\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{OPPh}_{3}\right)\right]$ complex adopts a trans geometry, whereas $\left[\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{Me}_{2} \mathrm{SO}\right)_{2}\right]$ is cis. The other three examples contain bidentate ligands and are therefore forced to have cis geometry. The $\mathrm{Pd}-\mathrm{O}$ distances in the present complex, (I), are longer than those reported for cis- $\left[\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{Me}_{2} \mathrm{SO}\right)_{2}\right],\left[\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2}-\right.$ (diphenylphenanthroline) $],\left[\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2}(1,10\right.$-dithia-18-crown-6)] or $\left.\left[\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2}\left\{{ }^{(} \mathrm{PrO}\right)_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{NEt}_{2}\right\}\right]$. The longer $\mathrm{Pd}-\mathrm{O}$ distances are a consequence of the greater trans influence of the phosphine groups in the present case. The small $\mathrm{P}-\mathrm{Pd}-\mathrm{P}$ angle in $\left[\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2}-\right.$ (dppm)] is typical of complexes containing chelating dppm . The $\mathrm{O}-\mathrm{Pd}-\mathrm{O}$ angle is smaller than those found in $\left[\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2}\right.$ (diphenylphenanthroline)] or [Pd$\left.\left(\mathrm{NO}_{3}\right)_{2}\left\{\left({ }^{i} \mathrm{PrO}\right)_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{NEt}_{2}\right\}\right]$, which may be a consequence of the presence of relatively bulky phenyl groups on the P atoms, although in cis- $\left[\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2}-\right.$ $\left(\mathrm{Me}_{2} \mathrm{SO}\right)_{2}$], the angle is only 83.0°.

The asymmetric unit of the title compound contains three CDCl_{3} molecules. The D atoms (referred to as $\mathrm{H} 1 S, \mathrm{H} 2 S$ and $\mathrm{H} 3 S$) of the solvent molecules and some aromatic H atoms from the phenyl groups, as well as the methylene H atom from the dppm ligand, form intermolecular hydrogen bonds (details are given in Table 3). A search of the Cambridge Structural Database (Allen \& Kennard, 1993) for systems of the type $\left[\mathrm{Pd} X_{2}(\mathrm{dppm})\right]$ resulted in five structures where $X=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}, \mathrm{SCN}$ and $\mathrm{CF}_{3} \mathrm{C}(\mathrm{O}) \mathrm{O}$. Out of these five compounds, only two [$X=\mathrm{Cl}$ (Steffen \& Palenik, 1976) and $\mathrm{CF}_{3} \mathrm{C}(\mathrm{O}) \mathrm{O}$ (Wink, 1990)] form hydrogen bonds involving a methylene H atom [distances: $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ 2.47 and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O} 2.41 \AA$; angles around hydrogen are 162.9 and 163.3°, respectively]. The ONO_{2} compound seems to have the strongest hydrogen bond but deviates most from linearity. The CH_{2} resonances in the ${ }^{1} \mathrm{H}$ NMR spectra of $\left[\mathrm{Pd} X_{2}(\mathrm{dppm})\right]\left(X=\mathrm{NO}_{3}, \mathrm{Cl}\right)$ are not shifted significantly from those where $X=\mathrm{CH}_{2} \mathrm{SiMe}_{3}$ or $2,4,6$ $\mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{2}$ (Stockland et al., 1997), suggesting that the hydrogen bonding is not maintained in solution.

Experimental

The title compound was prepared by treatment of a dichloromethane solution of $\left[\mathrm{PdCl}_{2}(\mathrm{dppm})\right](0.10 \mathrm{~g}, 0.18 \mathrm{mmol})$ with $\mathrm{AgNO}_{3}(0.091 \mathrm{~g}, 0.53 \mathrm{mmol})$. The solution was stirred for 48 h , then filtered and the solvents removed. The resulting solid was washed with ether and dried in vacuo, leaving the product as a pale yellow solid ($0.068 \mathrm{~g}, 62 \%$). Analysis calculated for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{P}_{2} \mathrm{Pd}$: C 48.80 , $\mathrm{H} 3.58 \%$; found: C $49.60, \mathrm{H} 3.68 \%$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta \mathrm{H} 4.02\left(t,{ }^{2} J_{\mathrm{PH}}=11.0 \mathrm{~Hz}\right.$, $2 \mathrm{H}, \mathrm{PCH}_{2} \mathrm{P}$), 7.2-7.8 ($\mathrm{m}, 20 \mathrm{H}, \mathrm{PPh}$); ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta \mathrm{P}-50.6$. Crystals suitable for X-ray diffraction analysis were grown from CDCl_{3} solution by slow evaporation.

Crystal data

$\left[\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{P}_{2}\right)\right]$.$3 \mathrm{CDCl}_{3}$
$M_{r}=975.80$
Monoclinic
$P 2_{1} / c$
$a=13.9841$ (2) \AA
$b=16.8118(2) \AA$
$c=16.8033(2) \AA$
$\beta=93.858(1)^{\circ}$
$V=3941.47(9) \AA^{3}$
$Z=4$
$D_{x}=1.645 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Bruker CCD area-detector diffractometer
φ and ω scans
Absorption correction: empirical (SADABS; Blessing, 1995)
$T_{\text {min }}=0.54, T_{\text {max }}=0.62$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 8192 reflections
$\theta=2-25^{\circ}$
$\mu=1.203 \mathrm{~mm}^{-1}$
$T=203$ (2) K
Cubic
$0.42 \times 0.42 \times 0.40 \mathrm{~mm}$ Colorless

$$
\begin{aligned}
& 7938 \text { reflections with } \\
& I>2 \sigma(I) \\
& R_{\text {int }}=0.04 \\
& \theta_{\max }=27.5^{\circ} \\
& h=-18 \rightarrow 18 \\
& k=0 \rightarrow 21 \\
& l=0 \rightarrow 21
\end{aligned}
$$

109227 measured reflections 9037 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.109$
$S=1.034$
9037 reflections
471 parameters
H atoms not refined
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0478 P)^{2}\right.$
$+7.3285 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$

Intensity decay: none

Table 1. Selected geometric parameters $\left(\AA^{\circ}{ }^{\circ}\right)$

PdI-O4	2.103 (2)	Pd1-PI	2.2241 (8)
PdI-OI	2.130 (2)	Pd1-P2	2.2345 (7)
Ol-Pdl-Pl	97.54 (7)	Pl -Pd1-P2	72.52 (3)
O4-Pd1-P2	104.72 (6)		

Table 2. Selected bond distances and angles $\left(\AA,^{\circ}\right)$ for palladium-nitrate complexes

Complex	$\mathrm{Pd}-\mathrm{Ol}$	$\mathrm{Pd}-\mathrm{O} 2$	$\mathrm{O} 1-\mathrm{Pd}-\mathrm{O} 2$
$\left[\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{dppm})\right]^{a}$	2.103 (2)	2.130 (2)	85.26 (9)
trans- $\left[\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{OPPh}_{3}\right)\right]^{b}$	2.031 (7)	2.031 (8)	179.0 (3)
cis- $\left[\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{Me}_{2} \mathrm{SO}\right)_{2}\right]^{c}$	2.066	-	83.0
$\left[\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2} \text { (diphenylphenanthroline) }\right]^{d}$	2.028 (3)	-	91.3 (1)
$\left[\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2}(1,10 \text {-dithia-18-crown-6) }]^{e}\right.$	2.039 (10)	2.052 (8)	88.8 (5)
$\begin{gathered} {\left[\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2}\left\{\begin{array}{c} \left.i{ }^{i} \mathrm{PrO}\right)_{2} \mathrm{P}(\mathrm{O})- \\ \left.\mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{NE}_{2}\right\} \end{array}\right\} .\right.} \end{gathered}$	1.995 (5)	1.989 (6)	89.0 (2)

Notes: (a) this work; (b) Jones et al. (1986); (c) Langs et al. (1967); (d) Tornroos (1995); (e) Izatt et al. (1990); (f) Jessup et al. (1983).

Table 3. Hydrogen-bonding geometry ($\left(A^{\circ}\right)$

$D — \mathrm{H} \cdots$ A	$D-\mathrm{H}$	H \cdots A	D. . A	$D-\mathrm{H} \cdots A$
C1-H1B...O6 ${ }^{1}$	0.98	2.38	3.257 (4)	149
ClS—HIS..O1	0.99	2.44	3.318 (5)	148
C1S—H1S..O3	0.99	2.37	3.103 (5)	131
$\mathrm{C} 2 \mathrm{~S}-\mathrm{H} 2 \mathrm{~S} \cdots \mathrm{O}^{\text {ii }}$	0.99	2.42	3.310 (6)	149
C3S-H3S . ${ }^{\text {O }}{ }^{1}$	0.99	2.51	3.232 (5)	129
C6-H6 . $\mathrm{O}^{\text {iii }}$	0.94	2.59	3.477 (4)	157
$\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{O}^{\text {iii }}$	0.94	2.48	3.148 (5)	128
C9-H9 . . O6 ${ }^{\text {i }}$	0.94	2.52	3.455 (6)	178
Symmetry codes: (i) $1-x, y-\frac{1}{2}, \frac{3}{2}-z$: (ii) $x, \frac{3}{2}-y, \frac{1}{2}+z$ (iii) $1-x, 1-y, 1-z$.				

Data were collected by the double-pass method using the CCD area-detector system. The first 50 frames of data were recollected at the end of data collection to monitor crystal decay. H atoms were treated using appropriate riding models (AFIX $=\mathrm{m} 3$). Two of the three CDCl_{3} molecules show disorder. The disordered Cl atoms were refined with distance constraints (DFIX, C-Cl $=1.700 \pm 0.005 \AA$) and their occupancy factors were refined as free variables (Sheldrick, 1998).

Data collection: SMART (Bruker, 1998). Cell refinement: SMART. Data reduction: SAINT (Bruker, 1998). Program(s) used to solve structure: SHELXTL-Plus (Sheldrick, 1998). Program(s) used to refine structure: SHELXTL-Plus. Molecular graphics: SHELXTL-Plus. Software used to prepare material for publication: SHELXTL-Plus.

$\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]_{4} \mathrm{H}_{\mathbf{1 2}} \mathrm{Ge}_{\mathbf{9}} \mathrm{O}_{\mathbf{2 6}} \cdot \mathbf{1 4} \mathrm{H}_{\mathbf{2}} \mathrm{O}$

Akhilesh Tripathi, ${ }^{a}$ Victor G. Young Jr, ${ }^{b}$
Geoffrey M. Johnson, ${ }^{c}$ Christopher L. Cahill ${ }^{a}$ and
John B. PARISE ${ }^{a, c}$
${ }^{a}$ Department of Chemistry, SUNY, Stony Brook, NY 117943400, USA, ${ }^{b}$ Department of Chemistry; The University of Minnesota, MN 55455, USA, and 'Department of Geosciences, SUNY, Stony Brook, NY 11794-2100, USA.
E-mail: jparise@notes.cc.sunysb.edu

(Received 24 August 1998: accepted II November 1998)

Abstract

The title compound, tetrakis(tetramethylammonium) dodecahydroxotetradecaoxononagermanate tetradecahydrate, $\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}\right)_{4}\left[\mathrm{Ge}_{9} \mathrm{O}_{14}(\mathrm{OH})_{12}\right] \cdot 14 \mathrm{H}_{2} \mathrm{O}$, was synthe-

[^0]
[^0]: Acta Crustallographica Section C
 ISSN 0108-2701 © 1999

